• 5 Posts
  • 150 Comments
Joined 1 year ago
cake
Cake day: July 4th, 2023

help-circle
  • 23!

    Spoilerific

    Got lucky on the max clique in part 2, my solution only works if there are at least 2 nodes in the clique, that only have the clique members as common neighbours.

    Ended up reading wikipedia to lift one the Bron-Kerbosch methods:

    #!/usr/bin/env jq -n -rR -f
    
    reduce (
      inputs / "-" #         Build connections dictionary         #
    ) as [$a,$b] ({}; .[$a] += [$b] | .[$b] += [$a]) | . as $conn |
    
    
    #  Allow Loose max clique check #
    if $ARGS.named.loose == true then
    
    # Only works if there is at least one pair in the max clique #
    # That only have the clique members in common.               #
    
    [
      #               For pairs of connected nodes                   #
      ( $conn | keys[] ) as $a | $conn[$a][] as $b | select($a < $b) |
      #             Get the list of nodes in common                  #
          [$a,$b] + ($conn[$a] - ($conn[$a]-$conn[$b])) | unique
    ]
    
    # From largest size find the first where all the nodes in common #
    #    are interconnected -> all(connections ⋂ shared == shared)   #
    | sort_by(-length)
    | first (
      .[] | select( . as $cb |
        [
            $cb[] as $c
          | ( [$c] + $conn[$c] | sort )
          | ( . - ( . - $cb) ) | length
        ] | unique | length == 1
      )
    )
    
    else # Do strict max clique check #
    
    # Example of loose failure:
    # 0-1 0-2 0-3 0-4 0-5 1-2 1-3 1-4 1-5
    # 2-3 2-4 2-5 3-4 3-5 4-5 a-0 a-1 a-2
    # a-3 b-2 b-3 b-4 b-5 c-0 c-1 c-4 c-5
    
    def bron_kerbosch1($R; $P; $X; $cliques):
      if ($P|length) == 0 and ($X|length) == 0 then
        if ($R|length) > 2 then
          {cliques: ($cliques + [$R|sort])}
        end
      else
        reduce $P[] as $v ({$R,$P,$X,$cliques};
          .cliques = bron_kerbosch1(
            .R - [$v] + [$v]     ; # R ∪ {v}
            .P - (.P - $conn[$v]); # P ∩ neighbours(v)
            .X - (.X - $conn[$v]); # X ∩ neighbours(v)
               .cliques
          )    .cliques    |
          .P = (.P - [$v]) |       # P ∖ {v}
          .X = (.X - [$v] + [$v])  # X ∪ {v}
        )
      end
    ;
    
    bron_kerbosch1([];$conn|keys;[];[]).cliques | max_by(length)
    
    end
    
    | join(",") # Output password
    


  • Hacky Manual parallelization

    22-b.jq

    Massive time gains with parallelization + optimized next function (2x speedup) by doing the 3 xor operation in “one operation”, Maybe I prefer the grids ^^:

    #!/usr/bin/env jq -n -f
    
    #────────────────── Big-endian to_bits ───────────────────#
    def to_bits:
      if . == 0 then [0] else { a: ., b: [] } | until (.a == 0;
          .a /= 2 |
          if .a == (.a|floor) then .b += [0]
                              else .b += [1] end | .a |= floor
      ) | .b end;
    #────────────────── Big-endian from_bits ────────────────────────#
    def from_bits: [ range(length) as $i | .[$i] * pow(2; $i) ] | add;
    
    ( # Get index that contribute to next xor operation.
      def xor_index(a;b): [a, b] | transpose | map(add);
      [ range(24) | [.] ]
      | xor_index([range(6) | [-1]] + .[0:18] ; .[0:24])
      | xor_index(.[5:29] ; .[0:24])
      | xor_index([range(11) | [-1]] + .[0:13]; .[0:24])
      | map(
          sort | . as $indices | map(
            select( . as $i |
              $i >= 0 and ($indices|indices($i)|length) % 2 == 1
            )
          )
        )
    ) as $next_ind |
    
    # Optimized Next, doing XOR of indices simultaneously a 2x speedup #
    def next: . as $in | $next_ind | map( [ $in[.[]] // 0 ] | add % 2 );
    
    #  Still slow, because of from_bits  #
    def to_price($p): $p | from_bits % 10;
    
    # Option to run in parallel using xargs, Eg:
    #
    # seq 0 9 | \
    # xargs -P 10 -n 1 -I {} bash -c './2024/jq/22-b.jq input.txt \
    # --argjson s 10 --argjson i {} > out-{}.json'
    # cat out-*.json | ./2024/jq/22-b.jq --argjson group true
    # rm out-*.json
    #
    # Speedup from naive ~50m -> ~1m
    def parallel: if $ARGS.named.s and $ARGS.named.i  then
       select(.key % $ARGS.named.s == $ARGS.named.i)  else . end;
    
    #════════════════════════════ X-GROUP ═══════════════════════════════#
    if $ARGS.named.group then
    
    # Group results from parallel run #
    reduce inputs as $dic ({}; reduce (
          $dic|to_entries[]
      ) as {key: $k, value: $v} (.; .[$k] += $v )
    )
    
    else
    
    #════════════════════════════ X-BATCH ═══════════════════════════════#
    reduce (
      [ inputs ] | to_entries[] | parallel
    ) as { value: $in } ({};  debug($in) |
      reduce range(2000) as $_ (
        .curr = ($in|to_bits) | .p = to_price(.curr) | .d = [];
        .curr |= next | to_price(.curr) as $p
        | .d = (.d+[$p-.p])[-4:]  | .p = $p # Four differences to price
        | if .a["\($in)"]["\(.d)"]|not then # Record first price
             .a["\($in)"]["\(.d)"] = $p end # For input x 4_diff
      )
    )
    
    # Summarize expected bananas per 4_diff sequence #
    | [ .a[] | to_entries[] ]
    | group_by(.key)
    | map({key: .[0].key, value: ([.[].value]|add)})
    | from_entries
    
    end |
    
    #═══════════════════════════ X-FINALLY ══════════════════════════════#
    if $ARGS.named.s | not then
    
    #     Output maximum expexted bananas      #
    to_entries | max_by(.value) | debug | .value
    
    end
    


  • EDIT: I have a sneaking suspicion that the computer will need to be re-used since the combo-operand 7 does not occur and is “reserved”.

    re p2

    Also did this by hand to get my precious gold star, but then actually went back and implemented it Some JQ extension required:

    #!/usr/bin/env jq -n -rR -f
    
    #─────────── Big-endian to_bits and from_bits ────────────#
    def to_bits:
      if . == 0 then [0] else { a: ., b: [] } | until (.a == 0;
          .a /= 2 |
          if .a == (.a|floor) then .b += [0]
                              else .b += [1] end | .a |= floor
      ) | .b end;
    def from_bits:
      { a: 0, b: ., l: length, i: 0 } | until (.i == .l;
        .a += .b[.i] * pow(2;.i) | .i += 1
      ) | .a;
    #──────────── Big-endian xor returns integer ─────────────#
    def xor(a;b): [a, b] | transpose | map(add%2) | from_bits ;
    
    [ inputs | scan("\\d+") | tonumber ] | .[3:] |= [.]
    | . as [$A,$B,$C,$pgrm] |
    
    
    # Assert  #
    if  [first(
            range(8) as $x |
            range(8) as $y |
            range(8) as $_ |
            [
              [2,4],  # B = A mod 8            # Zi
              [1,$x], # B = B xor x            # = A[i*3:][0:3] xor x
              [7,5],  # C = A << B (w/ B < 8)  # = A(i*3;3) xor x
              [1,$y], # B = B xor y            # Out[i]
              [0,3],  # A << 3                 # = A(i*3+Zi;3) xor y
              [4,$_], # B = B xor C            #               xor Zi
              [5,5],  # Output B mod 8         #
              [3,0]   # Loop while A > 0       # A(i*3;3) = Out[i]
            ] | select(flatten == $pgrm)       #         xor A(i*3+Zi;3)
          )] == []                             #         xor constant
    then "Reverse-engineering doesn't neccessarily apply!" | halt_error
     end |
    
    #  When minimizing higher bits first, which should always produce   #
    # the final part of the program, we can recursively add lower bits  #
    #          Since they are always stricly dependent on a             #
    #                  xor of Output x high bits                        #
    
    def run($A):
      # $A is now always a bit array                    #
      #                 ┌──i is our shift offset for A  #
      { p: 0, $A,$B,$C, i: 0} | until ($pgrm[.p] == null;
    
        $pgrm[.p:.p+2] as [$op, $x]       | # Op & literal operand
        [0,1,2,3,.A,.B,.C,null][$x] as $y | # Op &  combo  operand
    
        # From analysis all XOR operations can be limited to 3 bits  #
        # Op == 2 B is only read from A                              #
        # Op == 5 Output is only from B (mod should not be required) #
          if $op == 0 then .i += $y
        elif $op == 1 then .B = xor(.B|to_bits[0:3]; $x|to_bits[0:3])
        elif $op == 2
         and $x == 4  then .B = (.A[.i:.i+3] | from_bits)
        elif $op == 3
         and (.A[.i:]|from_bits) != 0
                      then .p = ($x - 2)
        elif $op == 3 then .
        elif $op == 4 then .B = xor(.B|to_bits[0:3]; .C|to_bits[0:3])
        elif $op == 5 then .out += [ $y % 8 ]
        elif $op == 6 then .B = (.A[.i+$y:][0:3] | from_bits)
        elif $op == 7 then .C = (.A[.i+$y:][0:3] | from_bits)
        else "Unexpected op and x: \({$op,$x})" | halt_error
        end | .p += 2
      ) | .out;
    
    [ { A: [], i: 0 } | recurse (
        #  Keep all candidate A that produce the end of the program,  #
        #  since not all will have valid low-bits for earlier parts.  #
        .A = ([0,1]|combinations(6)) + .A | # Prepend all 6bit combos #
        select(run(.A) == $pgrm[-.i*2-2:] ) # Match pgrm from end 2x2 #
        | .i += 1
        # Keep only the full program matches, and convert back to int #
      ) | select(.i == ($pgrm|length/2)) | .A | from_bits
    ]
    
    | min # From all valid self-replicating intputs output the lowest #
    



  • Day 14, got very lucky on this one, but too tired to think about why part 2 still worked.

    spoiler
    #!/usr/bin/env jq -n -R -f
    
    #     Board size     # Our list of robots positions and speed #
    [101,103] as [$W,$H] | [ inputs | [scan("-?\\d+")|tonumber] ] |
    
    #     Making the assumption that the easter egg occurs when   #
    #           When the quandrant product is minimized           #
    def sig:
      reduce .[] as [$x,$y] ([];
        if $x < ($W/2|floor) and $y < ($H/2|floor) then
          .[0] += 1
        elif $x < ($W/2|floor) and $y > ($H/2|floor) then
          .[1] += 1
        elif $x > ($W/2|floor) and $y < ($H/2|floor) then
          .[2] += 1
        elif $x > ($W/2|floor) and $y > ($H/2|floor) then
          .[3] += 1
        end
      ) | .[0] * .[1] * .[2] * .[3];
    
    #           Only checking for up to W * H seconds             #
    #   There might be more clever things to do, to first check   #
    #       vertical and horizontal alignement separately         #
    reduce range($W*$H) as $s ({ b: ., bmin: ., min: sig, smin: 0};
      .b |= (map(.[2:4] as $v | .[0:2] |= (
        [.,[$W,$H],$v] | transpose | map(add) 
        | .[0] %= $W | .[1] %= $H
      ))) 
      | (.b|sig) as $sig |
      if $sig < .min then
        .min = $sig | .bmin = .b | .smin = $s 
      end | debug($s)
    )
    
    | debug(
      #    Contrary to original hypothesis that the easter egg    #
      #  happens in one of the quandrants, it occurs almost bang  #
      # in the center, but this is still somehow the min product  #       
      reduce .bmin[] as [$x,$y] ([range($H)| [range($W)| " "]];
        .[$y][$x] = "█"
      ) |
      .[] | add
    )
    
    | .smin + 1 # Our easter egg step
    

    And a bonus tree:




  • Day 11

    Some hacking required to make JQ work on part 2 for this one.

    Part 1, bruteforce blessedly short
    #!/usr/bin/env jq -n -f
    
    last(limit(1+25;
      [inputs] | recurse(map(
        if . == 0 then 1 elif (tostring | length%2 == 1) then .*2024 else
          tostring | .[:length/2], .[length/2:] | tonumber
        end
      ))
    )|length)
    
    Part 2, some assembly required, batteries not included
    #!/usr/bin/env jq -n -f
    
    reduce (inputs|[.,0]) as [$n,$d] ({};     debug({$n,$d,result}) |
      def next($n;$d): # Get next           # n: number, d: depth  #
          if $d == 75                    then          1
        elif $n == 0                     then [1          ,($d+1)]
        elif ($n|tostring|length%2) == 1 then [($n * 2024),($d+1)]
        else #    Two new numbers when number of digits is even    #
          $n|tostring| .[0:length/2], .[length/2:] | [tonumber,$d+1]
        end;
    
      #         Push onto call stack           #
      .call = [[$n,$d,[next($n;$d)]], "break"] |
    
      last(label $out | foreach range(1e9) as $_ (.;
        # until/while will blow up recursion #
        # Using last-foreach-break pattern   #
        if .call[0] == "break" then break $out
        elif
          all( #     If all next calls are memoized        #
              .call[0][2][] as $next
            | .memo["\($next)"] or ($next|type=="number"); .
          )
        then
          .memo["\(.call[0][0:2])"] = ([ #                 #
              .call[0][2][] as $next     # Memoize result  #
            | .memo["\($next)"] // $next #                 #
          ] | add ) |  .call = .call[1:] # Pop call stack  #
        else
          #    Push non-memoized results onto call stack   #
          reduce .call[0][2][] as [$n,$d] (.;
            .call = [[$n,$d, [next($n;$d)]]] + .call
          )
        end
      ))
      # Output final sum from items at depth 0
      | .result = .result + .memo["\([$n,0])"]
    ) | .result
    



  • re:10

    Mwahaha I’m just lazy and did are “unique” (single word dropped for part 2) of start/end pairs.

    #!/usr/bin/env jq -n -R -f
    
    ([
         inputs/ "" | map(tonumber? // -1) | to_entries
     ] | to_entries | map( # '.' = -1 for handling examples #
         .key as $y | .value[]
       | .key as $x | .value   | { "\([$x,$y])":[[$x,$y],.] }
    )|add) as $grid | #           Get indexed grid          #
    
    [
      ($grid[]|select(last==0)) | [.] |    #   Start from every '0' head
      recurse(                             #
        .[-1][1] as $l |                   # Get altitude of current trail
        (                                  #
          .[-1][0]                         #
          | ( .[0] = (.[0] + (1,-1)) ),    #
            ( .[1] = (.[1] + (1,-1)) )     #
        ) as $np |                         #   Get all possible +1 steps
        if $grid["\($np)"][1] != $l + 1 then
          empty                            #     Drop path if invalid
        else                               #
        . += [ $grid["\($np)"] ]           #     Build path if valid
        end                                #
      ) | select(last[1]==9)               #   Only keep complete trails
        | . |= [first,last]                #      Only Keep start/end
    ]
    
    # Get score = sum of unique start/end pairs.
    | group_by(first) | map(unique|length) | add
    


  • Day 8

    Al lot of grid index shuffling these past few days! Not too difficult yet though, will this year be gentler or much harsher later?

    Part 2 code in JQ
    #!/usr/bin/env jq -n -R -f
    
    [ inputs / "" ] | [.,.[0]|length] as [$H,$W] |
    
    #----- In bound selectors -----#
    def x: select(. >= 0 and . < $W);
    def y: select(. >= 0 and . < $H);
    
    reduce (
      [
        to_entries[] | .key as $y | .value |
        to_entries[] | .key as $x | .value |
        [ [$x,$y],. ]  | select(last!=".")
      ] | group_by(last)[] # Every antenna pair #
        | combinations(2)  | select(first < last)
    ) as [[[$ax,$ay]],[[$bx,$by]]] ({};
      # Assign linear anti-nodes #
      .[ range(-$H;$H) as $i | "\(
        [($ax+$i*($ax-$bx)|x), ($ay+$i*($ay-$by)|y)] | select(length==2)
      )"] = true
    ) | length